Наверх
Решения Теория Задачник Идеи для учителя Заказать обучение

Найдите наименьшее значение функции y=4^(x^2-14x+50).

Решение:

Для нахождения первой производной данной функции будем ориентироваться на следующую табличную производную:

х)' = axlna.

И не забываем, что функция сложная.

y' = 4x^2 - 14x + 50 · ln4 · (x2-14x+50)' = 4x^2 - 14x + 50 · ln4 · (2x -14).

Приравняем производную к 0:

4x^2 - 14x + 50 · ln4 · (2x -14) = 0.

Произведение равно 0 тогда и только тогда, когда один из  множителей равен 0, т.е.

4x^2 - 14x + 50 = 0    или    2x -14 = 0

  корней нет                    х = 7

Т.к. мы находим наименьшее значение функции, то найденный корень подставляем вместо икса в функцию.

y(7) = 47^2 - 14 · 7 + 50 = 41 = 4.

Ответ: 4.

 

Не можешь найти нужную задачу? Предложи свою! Наша группа в VK.

#655

ТОП 15 примеров из раздела "Функции и их графики"

Постройте график функции y=x^2-4|x|-x и определите при каких значениях m прямая y=m имеет с графиком не менее одной, но не более трех общих точек.
#754
Найдите наименьшее значение функции y=9x-9ln(x+11)+7 на отрезке [-10,5; 0].
#529
Постройте график функции y=x-2,5 при х<2; у=-х+1,5 при 2<=х<=3; у=х-5 при х>3. Определите, при каких значениях m прямая y=m имеет с графиком ровно две общие точки.
#704
Найдите наименьшее значение функции y=13x-10sinx+1 на отрезке [0; π/2].
#576
Прямая y=-9x+5 является касательной к графику функции ax^2+15x+11 . Найдите a.
#819
Найдите наименьшее значение функции y=e^(2x)-5e^x-2 на отрезке [-2; 1].
#657
Установите соответствие между функциями и их графиками. А) y=-x^2-x+5; Б) y=(-3/4)x-1; B) y=-12/x.
#352
Найдите наименьшее значение функции y=4^(x^2-14x+50).
#655
Найдите точку максимума функции y=-x/(x^2+144).
#577
Постройте график функции y=3|x+8|-x^2-14x-48 и определите, при каких значениях m прямая y=m имеет с графиком ровно три общие точки.
#347
Найдите точку минимума функции y=((x+17)^2)*e^(30-x).
#651
В какой точке функция y=sqrt(x^2-22x+122) принимает наименьшее значение?
#578
Постройте график функции y=(3,5|х|-1)/(|х|-3,5х^2) и определите, при каких значениях k прямая y=kx не имеет с графиком общий точек.
#725
Постройте графики функций y=1/x при х<-1, y=|x^2|-2 при х>=-1 и определите, при каких значениях р прямая у=р имеет с графиком ровно одну общую точку.
#625
Найдите вершины парабол f(x)=x^2-6x+4; f(x)=-x^2-4x+1; f(x)=3x^2-12x+2.
#646