-
Решения
-
Теория
-
Задачник
-
Идеи для учителя
- Заказать обучение
Дано:
ABCD - четырехугольник
АС - диагональ
Доказать: АС < p.
Доказательство:
Запишем формулу для нахождения полупериметра четырехугольника:
Неравенство треугольника гласит: длина любой стороны всегда меньше суммы двух других сторон.
В треугольнике АВС АС < АВ + ВС.
В треугольнике ACD АС < AD + CD.
Сложим эти два неравенства:
2АС < АВ + ВС + AD + CD.
Разделим обе части на 2 и получится, что
Что и требовалось доказать.
Не можешь найти нужную задачу? Предложи свою! Наша группа в VK.